HealthCareMagic is now Ask A Doctor - 24x7 | https://www.askadoctor24x7.com

question-icon

What Is The Connection Between MTHFR Gene And Its Possible Mutation?

default
Posted on Thu, 7 Nov 2013
Question: Are you familiar with the mthfr gene and its possible mutation?
doctor
Answered by Dr. Vivek Chail (53 minutes later)
Brief Answer:
Please find detailed answer below.

Detailed Answer:
Hi XXXX,
Thanks for writing in to us.

I have read through your query in detail.

The official name of this gene is “methylenetetrahydrofolate reductase (NAD(P)H)” and MTHFR is the gene's official symbol.

Connection between the MTHFR gene and its possible mutation are the following:

1. homocystinuria - caused by mutations in the MTHFR gene
At least 40 mutations in the MTHFR gene have been identified in people with homocystinuria. Most of these mutations change single amino acids in methylenetetrahydrofolate reductase. These changes impair the function of the enzyme, and some cause the enzyme to be turned off (inactivated). Other mutations lead to the production of an abnormally small, nonfunctional version of the enzyme. Without functional methylenetetrahydrofolate reductase, homocysteine cannot be converted to methionine. As a result, homocysteine builds up in the bloodstream, and the amount of methionine is reduced. Some of the excess homocysteine is excreted in urine. Researchers have not determined how altered levels of homocysteine and methionine lead to the health problems associated with homocystinuria.

2. anencephaly - associated with the MTHFR gene
Several variations (polymorphisms) in the MTHFR gene have been associated with an increased risk of neural tube defects (NTDs), a group of birth defects that occur during the development of the brain and spinal cord. Anencephaly is one of the most common types of neural tube defect. Affected individuals are missing large parts of the brain and have missing or incompletely formed skull bones.
The most well-studied polymorphism related to the risk of neural tube defects changes a single DNA building block (nucleotide) in the MTHFR gene. Specifically, it replaces the nucleotide cytosine with the nucleotide thymine at position 677 (written as 677C>T). This variant, which is relatively common in many populations worldwide, produces a form of methylenetetrahydrofolate reductase that has reduced activity at higher temperatures (thermolabile). People with the thermolabile form of the enzyme have increased levels of homocysteine in their blood.
It is unclear how variations in the MTHFR gene increase the likelihood of neural tube defects. However, the increased risk may be related to differences in the ability of methylenetetrahydrofolate reductase to process folate. A shortage of this vitamin is an established risk factor for neural tube defects.

3. spina bifida - associated with the MTHFR gene
Polymorphisms in the MTHFR gene are also associated with an increased risk of spina bifida, another common type of neural tube defect. In people with this condition, the bones of the spinal column do not close completely around the developing nerves of the spinal cord. As a result, part of the spinal cord may stick out through an opening in the spine, leading to permanent nerve damage.
As described above, variations in the MTHFR gene may increase the risk of neural tube defects by changing the ability of methylenetetrahydrofolate reductase to process folate.

4. other disorders - increased risk from variations of the MTHFR gene
Polymorphisms in the MTHFR gene have also been studied as possible risk factors for a variety of common conditions. These include heart disease, stroke, high blood pressure (hypertension), high blood pressure during pregnancy (preeclampsia), an eye disorder called glaucoma, psychiatric disorders, and certain types of cancer. The 677C>T polymorphism in the MTHFR gene has also been suggested as a risk factor for cleft lip and palate, a birth defect in which there is a split in the upper lip and an opening in the roof of the mouth. Studies of MTHFR gene variations in people with these disorders have had mixed results, with associations found in some studies but not in others. Therefore, it remains unclear what role changes in the MTHFR gene play in determining the risk of these complex conditions.

Hope your query is answered.
Do write back in case of doubts.

Regards,
Dr. Vivek
Note: For detailed guidance on genetic screening consult a genetics specialist

Above answer was peer-reviewed by : Dr. Chakravarthy Mazumdar
doctor
Answered by
Dr.
Dr. Vivek Chail

Radiologist

Practicing since :2002

Answered : 6874 Questions

premium_optimized

The User accepted the expert's answer

Share on

Get personalised answers from verified doctor in minutes across 80+ specialties

159 Doctors Online

By proceeding, I accept the Terms and Conditions

HCM Blog Instant Access to Doctors
HCM Blog Questions Answered
HCM Blog Satisfaction
What Is The Connection Between MTHFR Gene And Its Possible Mutation?

Brief Answer:
Please find detailed answer below.

Detailed Answer:
Hi XXXX,
Thanks for writing in to us.

I have read through your query in detail.

The official name of this gene is “methylenetetrahydrofolate reductase (NAD(P)H)” and MTHFR is the gene's official symbol.

Connection between the MTHFR gene and its possible mutation are the following:

1. homocystinuria - caused by mutations in the MTHFR gene
At least 40 mutations in the MTHFR gene have been identified in people with homocystinuria. Most of these mutations change single amino acids in methylenetetrahydrofolate reductase. These changes impair the function of the enzyme, and some cause the enzyme to be turned off (inactivated). Other mutations lead to the production of an abnormally small, nonfunctional version of the enzyme. Without functional methylenetetrahydrofolate reductase, homocysteine cannot be converted to methionine. As a result, homocysteine builds up in the bloodstream, and the amount of methionine is reduced. Some of the excess homocysteine is excreted in urine. Researchers have not determined how altered levels of homocysteine and methionine lead to the health problems associated with homocystinuria.

2. anencephaly - associated with the MTHFR gene
Several variations (polymorphisms) in the MTHFR gene have been associated with an increased risk of neural tube defects (NTDs), a group of birth defects that occur during the development of the brain and spinal cord. Anencephaly is one of the most common types of neural tube defect. Affected individuals are missing large parts of the brain and have missing or incompletely formed skull bones.
The most well-studied polymorphism related to the risk of neural tube defects changes a single DNA building block (nucleotide) in the MTHFR gene. Specifically, it replaces the nucleotide cytosine with the nucleotide thymine at position 677 (written as 677C>T). This variant, which is relatively common in many populations worldwide, produces a form of methylenetetrahydrofolate reductase that has reduced activity at higher temperatures (thermolabile). People with the thermolabile form of the enzyme have increased levels of homocysteine in their blood.
It is unclear how variations in the MTHFR gene increase the likelihood of neural tube defects. However, the increased risk may be related to differences in the ability of methylenetetrahydrofolate reductase to process folate. A shortage of this vitamin is an established risk factor for neural tube defects.

3. spina bifida - associated with the MTHFR gene
Polymorphisms in the MTHFR gene are also associated with an increased risk of spina bifida, another common type of neural tube defect. In people with this condition, the bones of the spinal column do not close completely around the developing nerves of the spinal cord. As a result, part of the spinal cord may stick out through an opening in the spine, leading to permanent nerve damage.
As described above, variations in the MTHFR gene may increase the risk of neural tube defects by changing the ability of methylenetetrahydrofolate reductase to process folate.

4. other disorders - increased risk from variations of the MTHFR gene
Polymorphisms in the MTHFR gene have also been studied as possible risk factors for a variety of common conditions. These include heart disease, stroke, high blood pressure (hypertension), high blood pressure during pregnancy (preeclampsia), an eye disorder called glaucoma, psychiatric disorders, and certain types of cancer. The 677C>T polymorphism in the MTHFR gene has also been suggested as a risk factor for cleft lip and palate, a birth defect in which there is a split in the upper lip and an opening in the roof of the mouth. Studies of MTHFR gene variations in people with these disorders have had mixed results, with associations found in some studies but not in others. Therefore, it remains unclear what role changes in the MTHFR gene play in determining the risk of these complex conditions.

Hope your query is answered.
Do write back in case of doubts.

Regards,
Dr. Vivek